We describe a two-channel broadband cavity enhanced absorption spectrometer (BBCEAS) for aircraft measurements of glyoxal (CHOCHO), methylglyoxal (CH3COCHO), nitrous acid (HONO), nitrogen dioxide (NO2), and water (H2O). The instrument spans 361-389 and 438-468 nm, using two light-emitting diodes (LEDs) and a single grating spectrometer with a charge-coupled device (CCD) detector. Robust performance is achieved using a custom optical mounting system, high-power LEDs with electronic on/off modulation, high-reflectivity cavity mirrors, and materials that minimize analyte surface losses. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns to date. The demonstrated precision (2σ) for retrievals of CHOCHO, HONO and NO2 are 34, 350, and 80 parts per trillion (pptv) in 5 s. The accuracy is 5.8, 9.0, and 5.0 %, limited mainly by the available absorption cross sections.
We describe a two-channel broadband cavity enhanced absorption spectrometer (BBCEAS) for aircraft measurements of glyoxal (CHOCHO), methylglyoxal (CH3COCHO), nitrous acid (HONO), nitrogen dioxide (NO2), and water (H2O). The instrument spans 361-389 and 438-468 nm, using two light emitting diodes (LEDs) and a grating spectrometer with a charge-coupled device (CCD) detector. Robust performance is achieved using a custom optical mounting system, high power LEDs with electronic on/off modulation, state-of-the-art cavity mirrors, and materials that minimize analyte surface losses. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns to date. The demonstrated precision (2σ) for retrievals of CHOCHO, HONO and NO2 are 34, 350 and 80 pptv in 5 s. The accuracy is 5.8, 9.0 and 5.0 % limited mainly by the available absorption cross sections.
FULL SolidWorks 2016 SP2 x64 --- With SN and activator
Download File: https://adit0dapo.blogspot.com/?an=2vJx8u
New detector array, the Modular Total Absorption Spectrometer (MTAS),was commissioned at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Lab(ORNL).Total absorption gamma spectra measured with MTAS are expected to improve beta-feeding patterns and beta strength functions in fission products.MTAS is constructed out of hexagonal NaI(Tl) detectors with a unique central module surrounded by 18 identical crystals assembled in three rings. The total NaI(Tl) mass of MTAS is over1000 kg.The response of the central and other 18 MTAS modules to -radiation was simulated using the GEANT4 tool kit modified to analyze the nonlinear light output of NaI(Tl).A detailedmore description oftheGEANT4modifications madeisdiscussed.SimulatedenergyresolutionofMTAS modules is found to agree well with the measurements for single transitions of 662keV (137Cs) with 8.2% full width half maximum (FWHM),835keV (54Mn) with FWHM of 7.5% FWHM, and 1115keV (65Zn) with FWHM of 6.5%.Simulations of single and multiple -rays from 60Co are also discussed. less
The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. We performed an integral energy analysis by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m 3, and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. Furthermore, a system consisting of 6 turbo-molecular pumps andmore 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300 C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10 -11 mbar range. We demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016. less
An architecture and process for the rapid prototyping and subsequent development of an adaptive tunable laser absorption spectrometer (TLS) are described. Our digital hardware/firmware/software platform is both reconfigurable at design time as well as autonomously adaptive in real-time for both post-integration and post-launch situations. The design expands the range of viable target environments and enhances tunable laser spectrometer performance in extreme and even unpredictable environments. Through rapid prototyping with a commercial RTOS/FPGA platform, we have implemented a fully operational tunable laser spectrometer (using a highly sensitive second harmonic technique). With this prototype, we have demonstrated autonomous real-time adaptivity in the lab with simulated extreme environments.
The main physics program of the International Linear Collider (ILC) requires a measurement of the beam energy at the interaction point with an accuracy of 10sup -4 or better. To achieve this goal a magnetic spectrometer using high resolution beam position monitors (BPMs) has been proposed. This paper reports on the cavity BPM system that was deployed to test this proposal. We demonstrate sub-micron resolution and micron level stability over 20 hours for a 1 m long BPM triplet. We find micron-level stability over 1 hour for 3 BPM stations distributed over a 30 m long baseline. The understanding ofmore the behavior and response of the BPMs gained from this work has allowed full spectrometer tests to be carried out. less
The Muon Ionization Cooling Experiment located at Rutherford Appleton Laboratory in England utilizes a supercon-ducting solenoid system for the muon cooling channel that also holds particle tracking detectors and muon absorbers inside their bores. The solenoid system installation was completed in summer of 2015 and after commissioning the system it has been running successfully. As a result, this paper summarizes the commissioning results and operational experience with the magnets focusing on the per-formance of the two Spectrometer Solenoids built by the US.
Dynamic alignment has been demonstrated as a practical approach to alignment maintenance for systems in the infrared region of the spectrum. On the basis of work done by OPTRA, this technique was introduced in commercial Fourier transform spectrometer systems in 1982 and in various forms is now available from a number of manufacturers. This paper reports on work by OPTRA to extend the basic technique to systems operating in the ultraviolet. In addition, this paper reports the preliminary results of the development of an alignment system using a laser diode in place of a gas laser normally found in dynamic alignment systems. A unique optical system and spatial heterodyne technique allows for achievement of a metrology system with characteristics that fully satisfy the requirements of an ultraviolet spectrometer system.
We discuss the development of a plasmonic spectrometer for in situ characterization of solar system surface and subsurface environments. The two goals of this project are to (1) quantitatively demonstrate that a plasmonic spectrometer can be used to rapidly acquire high signal-to-noise spectra between 0.5 - 1.0 microns at a spectral resolution suitable for unambiguous detection of spectral features indicative of volatiles and characteristic surface mineralogies, and (2) demonstrate that this class of spectrometer can be used in conjunction with optical fibers to access subsurface materials and vertically map the geochemistry and mineralogy of subsurface layers, thereby demonstrating that a plasmonic spectrometer is feasible in a low-mass, low-power, compact configuration. Our prototype spectrometer is comprised of a broadband lamp/source, a fiber optic system to illuminate the sample surface and collect the reflected light, a mosaic filter element based on plasmon resonance, and a focal plane array (FPA) detector. Our work thus far has been divided into two primary areas: (i) the development of the plasmon filter element and (ii) the construction of a testbed to explore the source, fiber system and focal plane array components of the system. We discuss our preliminary design studies of the plasmonic nanostructure prototypes to optimize the full-width half-maximum of the filter, and our fiber illumination and signal collection system.
2ff7e9595c
Comentarios